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OPTIMAL SHORT-RANGE TRAJECTORIES FOR HELICOPTERS

G. L. Slater
University of Cincinnati

H. Erzberger
Ames Research Center

SUMMARY

An optimal flightpath algorithm vsing a simplified altitude state model and an
a priori climb-cruise~descent flight profile has been developed and applied to deter-
mine minimum fuel and minimum cost trajectories for a helicopter flying a fixed-range
trajectory. In addition, a method is developed for obtaining a performance model in
simplified form which is based on standard flight-manual data and which is applicable
to the computation of optimal trajectories. The entire performance~optimization
algorithm is simple enough that on-line trajectory optimization is feasible with a
relatively small computer.

The helicopter model used in this study is the Sikorsky 8-61N. The results show
that for this vehicle the optimal flightpath and optimal cruise altitude can repre~
sent a 10% fuel saving on a minimum—-fuel trajectory. The optimal trajectories show
considerable variability because of helicopter weight, ambient winds, and the rela-
tive cost trade-off between time and fuel. 1In general, "reasonable" variations from
the optimal velocities and cruise altitudes do not significantly degrade the optimal
cost.

For fuel~optimal trajectories, the optimum cruise altitude varies from the maxi-
mum (12,000 ft) to the minimum (0 ft) depending on helicopter weight. If time of
flight is an important component of the cost function, then significant reductions
in flight time from the minimum~fuel trajectory are achieved with only minor increases
in fuel cost.

1. INTRODUCTION

The unique hover and low-speed capabilities of the helicopter have made this
vehicle an important mode of transportation for many applications. General usage of
helicopters for commercial application has been limited, however, by the relatively
high cost of fuel and flight time for this wvehicle, in comparison to the conventional
fixed-wing aircraft. While flightpath optimization seems particularly attractive as
a means of minimizing these costs, two factors have tended to limit the development
of specified coperational procedures to allow the pilot to fly optimized flightpaths.
These are: (1) The performance characteristics of the helicopter are quite complex
and exhibit wide variations in weight and altitude. These changes cause subsequent
major differences in the character of the optimal paths. (Z) Because the helicopter
is a relatively low-speed vehicle, atmospheric winds also play a significant role in
determining the shape of the optimal trajectories. Unless accurate knowledge of
winds is available, & computed optimal trajectory may be significantly in error.

One of the first attempts at flightpath cptimization was done by Schmitz (ref. 1)
who investigated the takeoff problem for a heavily loaded helicopter using a




variational approach and subsequently tested a "suboptimal® implementation of this
control pelicy (ref. 2). The work of Olsen (ref. 3) was directed at onboard optimi-
zation of climb and cruise trajectories but utilized only a classical guasi-steady
performance approach.

The purpose of this study is to develop a synthesis procedure to allow onboard
generation of "optimal" trajectories for helicopters for arbitrary weight and wind
conditions. In particular, trajectories are determined which minimize a cost func-
tion chosen as a weilghted sum of time and fuel such that time, fuel, or "cost" can be
minimized by appropriate selection of the weighting factors. The analytical procedure
is based on the method used by Erzberger for fiwxed-wing aircraft., The method is spe-
cialized here to apply te a performance model representative of a helicopter. Much
of the effort in this study has been toward the generation of an appropriate perfor-
mance model which reflects the variabiliecy in the true vehicle, yet is simple enough
to allow onbeard, real-time computation of trajectories. In this report we have spe-
cialized ocur study te the Sikorsky S5-61N helicopter. Section 2 of this paper outlines
the performance model used in this study., The development of the optimization proce-
dure is shown in section 3. The essential characteristics of the optimal trajectories
and differences between these results and the comparable fixed-wing results are
emphasized.

Finallv, the application of the optimization algorithm and representative optimal
trajectories for the S-61N helicopter ars shown in sectiocn 4.

2. DEVELOPMENT OF A HELICOPTER PERFORMANCE MODEL

In the development of a performance model for the helicopter, two goals influ-
ence our approszch. The first goal is to receognize that the primary aim of this effort
is to develop an on-line procedure such that operational helicopters with only mod-
evate onboard computational capability can utilize this model to perform on-line tra-
jectory optimization. The second is to ensure that the model 1s accurate enough over
the entire operating envelope of the vehicle so that Yoptimal’ trajectories that are
computed using this model will not deviate significantly from the "true" optimal
policy., This "true" optimal policy is of course unknown and hence it is impossible
to check this second attribute directly. Rather, the accuracy of our model is gauged
by comparing the predicted performance with the performance values given in the heli-
copter flight manual (ref. 4. To implement the flightpath-optimization algorithm
three perflormance guantities are regquired. These are:

(1} Power for level fiight (cruise power),
(2} Rate-of-climb and rate-of-descent data.
{3} Engine power availabie and fuel-flow data.

These three items are needed for all velocity and altirudes within the vehicle-flight
envelope as well as for the range of weights and engine-power settings. Our freat-

ment of sach of thesge items Is found in succeeding sections.



2.1 Cruise Power Required

The difficulties of analytically modeling nonaxial flow through a rotor, and
accurately accounting for varicus important effects such as stall, compressibility,
etc., make a strictly analytical approach to this problem unreasonable. Yet without
some account of the significant effects on required power caused by these items the
mathematics of the optimization procedure frequently lead to imvalid or nonsensical
results, The approach taken in this report is tce use only a simple phenomenclogical
model based on momentum and blade element theories. The flight manual data are then
fit to this simple model using variable coefficients that are functions of vehicle
weight and altitude,

We consider the power required for level cruise to be of the form

PR = C1P1 4 CZ‘:?U + EE?P {2.1)

The terms Py, Py, and Pp are analvtical models of the induced, parasite, and rotor
prefile powers, respectively {(see a text such as Bramwell (ref. 5} or Gessow and
Myers (ref, 61).

The induced power Py which uses the CGlauert approximation is written

?I = Ty (2;2)

i
where T is the retor thrust and vy is the induced velocity given implicitly by

S S (2.%)

1 i, e
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In ocur model we use the assumption T = W,

The parasite power represents the power dissipated by fuselage and hub drag and
is written:
1

PU "—”"Zf‘ fe;}\]" (2.4}

The roter profile power, that is, the power dissipated by the rotating hlades, is
given by the simple hlade element expression (ref. 6)

1
Pp = g ceg(l + é.?uz)ﬁAvi (2.5)

where ¥ is the advance ratio gvivt). Numerical values for the parameters of equa-
tiong {(2.33-(2.5} for the S-618 are shown in table 2.1.

These power expressions are quite simplistic and neglect several important terms
suych as nonuniform rotor inflow, azimuthal variation of drag coefficient, and addi-
tional unmodeled power terms such as the tall retor power. The model is gualitatively
correct, however, and becomes quite accurate when the coefficients ¢, c,, ¢, are
obtained by a least-squares it of this model to the flight manual data.




Several methods were used to fit a set of coefficients ¢,, ¢,, ¢ to the
flight data. In one method, labeled "model B," a least-squares fit was obtained for
a range of weight and altitude combinations. At each weight—-altitude combination,
the cruise-power data from the flight handbook was discretized (at 10 knot increments)
and the coefficients obtained from the least-square algorithm. The quality of the
curve fit was good as observed in figures 2.1(a)~2.1(d). For low weights and alti-
tudes the coefficients ¢y are close to 1 and behave consistently, indicating that
the simple power model expression (2.1) is indeed a good approzximation to the data,
At high altitudes and weights, the behavior of the coefficients is erratic, indicat-
ing difficulty in fitting to the simple model (see figs. 2.2(a)~2.2{(c)). The source
of the difficulty can be partially resolved by replotting the estimated ceefficients
as a function of thrust coefficient cp (cp = WfpV%A} in figures 2.3(a)-2.3{c). At
high thrust coefficients (corresponding to high rotor-1lift coefficients) the erratic
variation in fit coefficients (particularly ¢, and cy) is an indication that the
simple rotor power expression (2.1) is inadequate to model the true power variation
with speed. In particular, it is apparent that unmodeled variations with speed in
the rotor profile power are being absorbed into the body drag term which has a v?
variatien. To improve the quality of the model the ad hoc stall and compressibility
corrections given by Keys (ref. 7) were included in the Jleast~square algorithms.
These corrections did little to improve the consistency of the coefficients and were
subseguently omitted.

The primary concern in using these data in the power model is the necessity of
interpolating between points to obtain data for the intermediate weights and alti-
tudes. The optimization algorithm is sensitive to derivative information; hence,
there is concern about the validity of the trajectories obtained in this case., To
improve upon the smocthness of the model an alternate fit technique was applied which
assumed that for each weight the coefficients Cys €,y ¢, were linear functions of
altitude. The resultant coefficients are shown in figure 2.2 labeled as "A" Model.
Thig method does indeed improve the smoothnesgs of the fit coefficients; however, the
quality of fit, particularly at high weilght and altitude, is decreased as seen in
figure 2.4, In determining the optimal flightpaths, primary use was made of this
smoothed "A" Model. Comparisons of flightpaths computed from the two models are used
to indicate the sensitivity of the trajectory genevating algorithm to the slight dif-
ferences in the simplified performance model.

Mass density of the air is the primary atmospheric parameter which determines
aerodynamic forces (tempervature is significant if Mach effects are consldered), Con~
sequently, in parameterizing a model based on altitude it is assumed that "density
altitude"” is the appropriate definition to use. Since the f{light-manual cruise data
are pregsented for the standard atmosphere, the effect of using this model in a non-~
standard atmosphere cannot be evaluated at this time.

2.2 Propulsive Model

The 3-6iN 1s a dual-turbine~engine-powered helicopter using one of two engine
models curvently available. These are the General Electric CT58-110 engine having a
maximm continuous power (MCP) rating of 1050 SHP and the GE CT58-140 with an MCP of
1250 SHP per engine. The flight manual contains complete data for both engines; how-
ever, in this report only the performance with the CI58-140 engine is discussed.
Engine power zsvailable is shown as a function of altitude in figure 2.5 for standard
atmosphere conditions. Performance for off-nominal temperatures is avallable in the
manual bul was not used in this reporr.




Engine fuel-flow characteristics corrected for altitude effects are shown in
figure 2.6. Note that for this engine the fuel flow is a linear function of power
at all altitudes. Data are available in the manual only at the fwo altitudes, sea
level and 5000 fr. Using standard engine normalizacion techniques these data are
extrapolated to other conditions by using the "corrected” fuel flow WFC = Wpfﬁ/g

and the corrected power HP . = HP/§V6, where & = plpy. & = T/"Eﬁ are the pressure
and temperature ratios, respectively. This scaling is validated for the current
engine by noting that under this transformation the corrected fuel flows for

h = gea level and h = 5000 ft coalesce to a single curve.

Optimum steady state cruise performance can be established by using the perfor—
mance models of the previous section in conjunction with the fuel~-flow data. The
parameter (Wg/V) (dimensionally the weight of fuel expended per unit distance trav-
eled) is referred to in this report as the "cruise cost.” In addition te 1ts Impor-
tance in conventional quasi-gteady performance calculations, this guantity is shown
in succeeding sections of this report to be of fundamental importance in determining
the atructure of the fuel optimal trajecteries. TFor each altitude and weight the
minimum fuel cruise gost chJV)* = m%n(WFfV) and the corresponding optimm cruise

speed V* = arg min(Wy/V} are determined. Variations in these quantities for each of
vV

‘the two performance models of the previous section are shown in figures 2,7 and 2,8.
We expect that the minimum cruise cost of the model B is reascnably accurate at each
of the match points. The smoothed model (A) agrees very well at the low gross weight
(13,000~15,000 1b) and 1s a poor fit only for the heavy weilghts (W = 17,000-19,000 1b)
at the higher altitudes. The large discrepancy at the high altitude for

W o= 19,000 1b is net of significance since the optimal traiectories do not enter

this region. At the intermediate weight, W = 17,000 1ib, the two models predict oppo-
site trends with increasing altitude. In this area the fuel optimal trajectories
must be examined carefully to assure that the computed optimal performance is not
significantly sensitive to potential modeling errors.

The minimization shown in figures 2,7 and 2.8 was done without consideration of
the operating limits imposed upon the $-~61W. Superimposed with V# on figure 2.8
are the handbock Vyp (velocity-never-to-exceed) curves. It is seen that the uncon~
strained minimization results in optimal cruise speeds consistently falling outside
the Vyp curves at the higher altitudes (it should be pointed out that handbook
crulse data are also frequently outside this boundary). In subsequent trajectory
minimizations Vygp 15 used as an upper limit on the allowable speed; hence, the
cruise cost shown in figure 2.7 is frequently not achieved.

2.3 Climb-Descent Calculations

Crulse-power curves of helicopter in level flight cannot be directly applied to
the computation of c¢limb performance, unlike those for the fixed-wing aireraft. The
reason 18 that, In contrast to the fized-wing airecraft, the helicopter in a climb
experiences very little fuselage rotation. Consequently, a vertical velcocity com-
ponent significantly affects the inflow inte the rotor; hence, the force and power
characteristics mav change significantly beétween level flight and maximm climb rate,
though in a continucus wav, Keys points out in his report (vef. 7) that climb in a
helicopter is affected by an dncrease in the efficiency of producing thrust, download
on the fuselage, increased transmission leosses and increases in fail rotor power, all
of which have no analog In fized-wing alrcraft.

()]




Using a technique suggested by Keys (ref. 7) the helicopter climb is simplified
by introducing an empirical climb (or descent) factor and writing the climb rate h
as

h o= ke y(®y = PRI/ (2.6)

where () indicates either climb or descent, P, 1s the rotor-shaft power available,
and Pp 1is the level-flight cruise power required. TFor the climb factor Keys reports
typical values as kgpg % 0.70-0.85. The corresponding descent factor kpgp 2 1.

The climb factor for the S-6IN is estimated by comparing the flipght manual
maximum-rate-of-climb data to the computed maximum-rate-cf-climb data using equa~
tion (2.6). The factor becomes difficult to assess accurately for very low rates of
climb because of inconsistencies between the cruise data and climb data published in
the flight manual (vef. 4). A summary of the computed climb factors for a number of
points is shown in figure 2.9, On the basis of these data a c¢limb factor of 0.75,
shown as a dashed line in figure 2.9, is used throughout this report.

Limited descent data obtained from single-engine operation data indicate that
kpgr £ 1 1is reasonable in the descent phase of the trajectory. The relationship of
these factors to the structure of the optimal trajectories is discussed in the next
section.

In the case of fixed-wing aircraft, potential energy (altitude) and kinetic
energy {velocity) are cften assumed to be interchangeable and in fact if
E = (h + V3)/2g, then E = (P - Pr)/W is a frequently used performance relation.
For the helicopter, it is seen that potential energy changes are complicated by the
climb and descent factors. We speculate also that when undergoing velocity changes,
an acceleration factor can be introduced, such that

av: o Pat ™
dt 2g =~ "AcC W

The numerical value of such an acceleration factor is needed if a true~energy-type
analysis is to be performed. Unfortunately, only little data are available at the
present time to alilow determination of such a factor. For the performance analysis
carried out in the later sections of this report, this problem is circumvented by
neglecting kinetic-energy effects on the optimal trajectories. The validity of this
agsumption is discussed in section 4.

3. FORMULATION OF OPTIMAL TRAJECTORY PROBLEM

3.1 Mathematics of Optimization

Using the helicopter performance model of the previous section, we will examine
fixed-range trajectories which optimize gome performance index. Typically, we may be
interested in minimum fuel or minimum operating cost, but, in general, we assume the
optimization problem can be formulated as minimization of an integral of the form

Ly
J = f ¥ dt {3.1a)

0




The optimal trajectory is & determination of the altitude h and range x as
functions of time as well as the supplementary variables such as speed, power setting,
flightpath angle, etc. such that performance index (3.la) achieves a minimum value
subject to a fixed-range constraint and any additional constvaints reflecting oper-
ating limits of the vehicle.

The problem as pesed fits into the framework of & calculus of variations or
"optimal control" problem. While umecessary conditions for optimality are rather easy
to specify {(see, e.g., Bryson and Ho (ref. 8)) numerical computations of the minimiz-
ing trajectory can be a difficult and time consuming task involving iterative solu-
tions of a monlinear two-point boundary-value problem. This problem can be simpli-
fied 1f we assume at the ocutset an a priori structure for the optimal trajectory.
Using the methodology of Erzberger and Lee (ref. 9) we assume the trajectory can be
split into three distinct segments as shown in figure 3.1. These are: (1) an ascent
segment, (2) a constant altitude cruise segment, and (3} a descent segment. The cost
integral (3.la) can then be written as

Lup te
J = f (Flpp dt + (F)DST dt + Fpg Atoy (3.1b)
¢ tpsT

To further simplifyv, we assume the energy per unit weight (Tenergy height™)

v
= h +
h,, T

(3.2)

is monctonic on the ascent and descent portions of the trajectories and can be used
as an independent variable. In the fixed-wing case used by Erzberger, the energy
height satisfies

dh,

Fre = (P o PR)/W (3.3)

where ¥ 1is the available power from the propulsive system and Py 1is the power
required for equilibrium {constant energy) £light. Also In (3.3), the acceleration
normal to the flightpath is considered small. To extend this concept to a rotary-
wing vehicle requires certain additional assumptions. First, on a helicopter, the
rotor itself can serve as a significant energy storage device. 1f variable rotor
speeds are to be considered then rotor energy should be an additfional term in (3.2).
For this study a fixed retor speed, which is consistent with the flight manual per-
formance curves, was used. Hence, this term is not present. Second, the performance
model of the helicopter discussed in section 2 differentiates changes in potential
energy (h) and kinetic energy (V?/2g) by use of the climb, descent, and acceleraticn
factors. This suggests that potential and kinefic energy ave not interchangeable on
a trajectory as is generally the case with a conventional ajrcraft. These complica-
tions can be suppressed by noting Chat being an inherently low-speed vehicle, the
kinetic-energy term and, in particular, the kinetic-energy changes, are generally
fairly small for a helicopter (observe that at V = 100 knots, VEXZg = 443 fr),
Further, s8ince the changes on the optimizing trajectories occur over a fairly sub-
stantial time pericd, it is reasonable then to assume that the kinetic-ensrgy term
can be neglected completely, thersby eliminating the ueed for the acceleration factor.
This also implies that the "energy state' fo be used in this analvsis is more simply
Just the geometric altitude. Since the ascent and descent portions of the trajectory
are disjolnt, the enevgy velation (3.3) can be modified for the helicopter by

ot




insertion of the respective climb or descent factor on the appropriate segment of the
trajectory.

Converting to altitude as the independent variable, the cost function (3.1b) can

bhe written as
hor
¥ 3 P
I = f [(w) +( ) ]éh + (m) R (3.4)
0 b/yp \-h/pgr Vo Y/ OB

where Vi, is the wind and Rpg is the cruise range. In addition, the range must
satisfy

t
13)5
0 CpsT

where v 1is the flightpath angle. Written in terms of h as the independent vari-
able, this becomes

hep V cos vy + Vw V cos v + Vw
Ry = J‘ ( " + . dh + Reg (3.5a)

¢ h uP ~h DST

The integral constraint (3.52) can be more easily treated by intreducing a range vari-
able R(h) and rewriting as a differential equation constraint:

YV cos y + ¥V ¥V cos v + V
dR wwwmw~¢~wwm~ji + w {3.5b)
dh i -5
ur DST
R(G) = Reg (tc be determined) (3.6a)
R{hcg) = Ry (given) {3.0Db)

The problem then becomes cne of minimizing integral (3.4) while satisfyving the differ-
entlial equation constraint {3.5b) subject to boundary conditions (3.6). The control
variables in the integral (3.4) are the speed V and power available, Py, on the
climb and descent portions of the trajectory. Unlike the conventional energy-state
formuylation, large flightpath angles could have easily been incorporated into this
analysis 1if desired. Since the minimizatioms are performed holding h fixed, y can
always Dbe calculated explicitly a2s a function of V and P as v = sin"*(R/V). In
view of the other assumptions required in this analyvsis, this refinement was omitted
and the small angle assumption was used exclusively in the numerical results presented
in this report.

Using the Pontrvagin Minimum Principle, this problem is solved by adjoining the
differential eguation consgtraint (3.5b) to (3.4) using a co-state variable 4. The

resultant Hamiltonian can be distributed into climb and descent components as



where

F+ (Vcos v + vw)w
HU? =Y - ) (3.8)
h
up
F o+ (V cos v + Vw)w
Hpgr = : (3.9,
("h) DST

Additionally, we define the augmented function of end conditions

Y F

where H 1 a function of the variables V, and P on both the ascent and descent
segments of the trajectory. During cruise we have the single control variable Vpg.
The wind Vy d1s a specified function of altitude on each of the three trajectory
segments.

Application of the minimum principle leads to the following necessary conditions:

Vg?, Fg? = argmin(HUP) (3.11a)
v,p
VAN PE o = in (Byem) 3.11b)
psT» Fpgr = argmin(Hpgp (3.11
V., = in [t (3.11¢)
CR arg\;ﬁun v ¥ Vw » (84

, F . .
m;n (ﬁmﬁwvé)h = her 3 R. # 0
Y= {3.114)
W H R. =0

If hep is a free variable, then at the optimal altitude the transversality condition
is:

H'k+ o

Thox R, =0 (3.11le)

For a further discussion of these conditions, see Erzberger (ref. 9),

3.2 Properties of Qptimal Controls

The minimization of Hyp and Bpgy in (3.11) is a double minimization that must
be performed aft each altitude, For this study we look at functionals of the form:

F o= cqp + oyWlp {3,123




where Wy is the fuel flow rate, and cg and cy are cost weighting factors for
time and fuel, respectively. If cy = 0 we have the minimum fuel problem. If

cp = 0 we have the minimum time problem. For the model under study, the fuel flow
is a linear function of the power available in the form:

Wg = a + bP (3.13)

¥or the particular problem in this study we show that the available power that mini-
mizes Hpp or Hpgr must always lie on the boundary of the admissible set. We con-

gider separately the ascent and desceant segments of the trajectory. For simplicity

we assume that the wind is zero.

3.2.1 Ascent- In the ascent segment, the vate of climb is given by

h = kepp(® - Pg) (3.14)

where Pg = Pp(V) 1is the c¢ruise power required at some h, V. On ascent the power
must satisfy the constraint:

1f we consider V as fixed, then P must be chosen to minimize

Cp +'CF(a + bP) - vV
Hyoo =
up kepg(® ~ Ppl

(3.16)
(e + cpa - V) + cpbP

keLp(®P ~ PR)

The graph of (3.16) is as sghown in figure 3.2, Since {(3.16) is a bilinear function
of P, its derivative is nowhere zero and the region P 2 Pp is excluded from the
alliowable control region by (3.15). Consequently, for the ascent segment of the tra-
jectory we have

Pip = Phax (3.17)

Since the optimal P is established by (3.17), we can now consider the variation of
Hyp with V.

¥ - il
Tmax W

ke Prax — PR)

HGP = (3.18)

where F,_. = F(Pmax) is now fixed and Pp has the general shape shown in figure 3.3.
Generally, we can zssume the optimal V will ldie on the increasing region of P

and must be less than some specified V .. for each altitude. Further V 1s bounded
by V. the equilibrium flight velocity for P = P__ .. The numerator of (3.18), being
linear in V with Tgg. and ¢ both positive, has one zero which we call Vo that
ls, Fogy = ¥V, = 0. Depending upon whether V, > V. or Vv, < V,, the graph of Hyp
takes on different shapes as shown in figures 3.4{¢a) and 3.4(b},

15




If v, < V..V, establishes the upper-velocity bounéaiy. Lf case {a) occurs
(VZ > Vz)’ then there exists a well-defined minimum at V = V such that

W; ~ ‘k‘“-"““ 0 (Note HUP > 0, dHUFde <0 at VvV = 0)
V=V
1f case (b) occurs then lim Hyp = -= and the minimization problem is obviously
V-V
1
ill-posed. Observe that by definition, V, satisfies
F .
DX =y~ min () (3.19)
z v lhthR

Consequently, we see that for case (b) to occur

R min {3.20)

Fmax Fhax (E)
1 z Vv v h=hep

occur at some point, causing the breakdown in the optimality conditions.

The situation changes slightly if there exists a velocity limit, V..., which

makes the equilibrium speed V, wunattainable, In this case, as shown in figure 3.5,
the minimum of Hpyp occurs at Vo= Vpa.. Can this case actually occur? From the

definition of vV, we have

.
T . T
“m&x T‘;Z

:jj

Hence, the V . limitation in this case forces the helicopter to climb at a speed
which is more fuel expensive than at the cruilse altitude. Physically this seems to

be a realizable situation,

In the alternate case where V, < Vyay <V, then HS? < 0 and  Fuu /Viase < 0.
Physically it seems contradictory to even want to climb in this condition since by
lowering the applied power (thereby lowering F) we can cruise at a lower altitude
than hpp and expend less fuel per unit distance traveled. This apparent paradox is

caused by the fact that we ave treating hCR as a fiwed limit. Consider wmin{(F/V)}
v

ag a function of altitude, where TV 1is evaluated at the cruise power. If min(F/V)
¥

is increasing on the interval {h,hCR} then direct construction shows that a lower
cost can be achieved by cruising at h rather than at hgp. The optimality of |hep
{for small perturbations} must be ascertained by examining the traversality condition
{3.11ey. This condition iz examined later in this section.

3.2,2 Descent- In the descent phase the power must be chosen to satisfy:

=

haS:i = {P e ?R) f&g < E)

i1



Using the same form of the cost function as in the ascent we have

F - 4V

Hpst = Gy T By (3.21)

where for simplicity we assume kpgr = 1. For fixed V and a linear fuel-flow func~
tion, Hpgy is again bilinear in P. The graph of Hpgy Is shown in figure 3.6.

For any V it is apparent that the minimum of Hpgy 1Is achieved at the con-
straint boundary P = Puj,. We can now set P = Pp., and examine the variation of
Hpgy with speed V. TFrom (3.21) with F = Fpy, a constant, the aumerator is again
a linear function of V with a zero at V =V We deduce then that Hpgy has the

-
properties
dipgy
Hpgr(Vy) = 0 3 —jﬁ?“'{vz} <0
(3.22)
1im Hyep = 007
BST
Vopao

Generally, because of the low fuel flow associated with Prine the value Vz ig
fairly low; hence, the graph of Hpgr dis as shown in figure 3.7.

gonditions (3.22) imply that an absolute minimum of Hpgp must occyr at some
V = Vpgp with v%ST » V,. The ﬁinimum may not be achieved if V .. < Vpgp but in
any event we will always have Hpgp < 0.

3.2.3 An alternpate descent ldmit- The use of a fized minimum-power limit may
yield unacceptable descent rates in parts of the flight regime. Rather than specify
P an alternate constraint has been implemented to constrain the descent rate

min?

_ Pp - P .
“hDSrg = "T'_" E h'm&X (COHS{&Ht) {3.23)

In view of the previcus discusslons on the variation ¢f Hpgr with P, the inequality
(3.23) is an equality on the optimum descent trajectory. This implies that on the
descent

*®

Ppgr =

PR - P,

¥

where "P_ " is a constant depending on the descent rate. The descent Hamiltonian is
of the form

psp - L cp(Pp ~ P) = 4V
(hpay)
For the typical variation of Pp with V (fig. 3.4}, Hyep has a well defined mini~

e . : C e > . ,
mum a8t YV = Vpop. Generally, H§S? is found to be negative. An important obsevvation
is that this minimizing speed is independent of the descent rate.
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3.3 Behavior of Optimal Solution as h + hep

In the fixed-wing case Erzberger and Lee found that the optimal climb/descent
speed and power generally blended in smoothly with the corresponding c¢ruise param-
eters as h -+ hep. In addition a nonzero crulse segment generally only occurred at
one altitude — the altitude for optimum cruise, where ¢ 1s a minimum. For the
helicopter problem in this report, the assumed linear fuel-flow relationship with
power forces the power to be discontinuous at the cruise altitude. We ghall show,
however, that the velocities at crulse are continuocus. In addition it will be shown
that the c¢limb and descent coefficients introduced in section Z cause the cruise
behavior of the helicopter to be gignificantly different from that of the fixed-wing

aircraft.

At any altitude below hpep the optimum power on the ¢climb/descent segments are
Pmax/Puin as derived previously. Hence, we fix the power at these levels to inves-
tigate the behavior of the optimal speeds as in the vicinity of Thgp.

3.3.1 Descent segment— Consider here the case of a fixed descent rate limit
where ?§ST = Pp = P;. Then we have

(CT + CFWF) - @U

HBpgr = :
hpgr

cp + c?{a + b(Py - P -V

Bpgr

_ TogbPy  ep * cp(a + bPp) - 3V

hpgr hpgy

"CybPQ + FCR - @V

bpgr hpgr

where FCR = cp + cF(a + b?g) is the cost integrand associated with equilibrium
cruise at the speed V and altitude h. The optimal descent speed Vpgp satisfies
for any h < hpyp

(3.243

dipst o . 1 (éFCR *}9
dVpgT

By definition we have, however, ¢ = min(FCR/VCR}hthR' Hence,

d Fer 1 Yo T

; - =10
Ver Ver  Ver Ver Vg
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or

w 3.25)
(dV ) b (
CR/h= hCR

Comparing (3.24) and (3.25) we see that as h = heps Vpet * VeRr-

3.3.2 Ascent segment~ On the climb segment the optimal ascent speed is given by

V* = argmin Eﬂﬁzwszzgg
up v Pmax

(3.26)
- Py

where superflucus constants have been discarded from the Hamiltonian.

At the minimum (assuming the minimum lies in the interior of the allowable
speeds)

Wp v, Fmax T Ve PR
d¥yp Prax ~ PR (Ppay ~ ?R}z dVyp
or
dPR
(Pmax - ?R>t,. - (Fm&x - ’\;!VUP) W = () {3.2?}

For the assumed cost function and the linear fuel-flow relation we have

Frax = Fr = ¢pp (Pray = PR) (3.28a)

and

dpy  dFg

§§EE,= EE%; (3.28b)

CFb

Using (3.28a) and (3.28b) in (3.27), we have

dFg Faax — IR 5
up max ~ ¥YUP
The optimum Vb? is the solution to (3.29) at each h < hC From the definition of
¥ and relationship {3.25) we note that as h + h cR> then VéP > VCR satisfies (3,29}

gince
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Our conclusion then is that the optimal ascent and descent speeds approach the cruise
speed as h - hpp.

While the optimal power is discontinuous at cruise we see that as h = hgp and
V + Veg the hyperbolic variations of Hyp and Hyor shown in figures 3.2 and 3.6
tend to a rectilinear hyperbola implying that the Hamiltonians are effectively inde-
pendent of power in this region. Thus, while the limits of the minimizing values are
discontinuous, the Hamiltonian itself is very insensitive to these variations at the
point of discontinuity,

3.3.3 Hamiltonian at cruise- The optimal crulse altitude is determined from the
transversalicy condition

4 + - %X R o= 0 (3.11e)

evaluated at hCR“

Thus it is of interest to examine the behavior of H to gain some insight into
the nature of the cruise. Since

H

V‘gP = VDST VCR st h = h’CR

then

— %
H" = Hyp + Hygp

which from (3.18) and (3.21} becomes

H o — e
Yeor Foin = YVer

% Ymax ¥ +
max = Pery  (kpgr/Wpgr) (Per - Ppin)

H
Ceepp/Wyp) (P

(3.30)

Using $VCR = Feps and the linear fuel-flow function (3.13), equation (3.30) can be
written

b Py ~ Peg cpb Prin ~ Per)

1 + ;
Ciopp/Myp) Prax = Per)  (kpgp/Wpgp) (Pog ~ Prin)

* Wop  Ypgt
H Cpb "g“*“*"*—-“iz"‘“”‘““
CLE  KpsT

- P

{3.31)

#

Assume that for a short crulse segmeunt, Wpp # Wpgyp = W. If we consider the case where
kerp = kpsT = L them H' = 0. From (3.1le), H® = 0 implies that the optimum cruise
range Rpp = 0 except at the optimum cruise altitude h*  where
h* = argmin{y] (3.32)
h

& . . . ~ . . ; .
At W, condition {3.1le) gives © =  and the optimum cruise range is getefmlngd
from the total range constraint. Note that the two terms in HY are Hyp and Hpygq
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implying that for this case these terms are equal in magnitude and opposite in
sign.

¥or the case whers the c¢limb and descent factors are not equal

1 1
B = o bW o w-“~m—) {3.33)
F (kcw knsT

There exists a nonzero cruise distance at all cruise altitudes given by:

H*

Re = = Wahgg) Gor/Vor)

(3.34)

Equation {(3.33) also confirms our earlier result that the crulse cost must be decreas-
ing at the cruise %ltitude since otherwise the crulse range from (g.B&) would be nega-
tive. As heg > h", the derivative (d/dh)(F.p/Vop) - 0 while H # 0. Hence, for
this case the optimal cruise altitude for any fixed vange trajectory is always below
the optimal cruise alctitude h.

The use of the climb and descent factors introduces an additional dilemma, how-
ever, which is yet to be resolved. For the data used in this report we have assumed
{and verified computationallv} that kcyp < kpgp. For this case H* > 0 and the
optimum range can be ascertained by use of (3.34). The dilemma concerns the hypo-
thetical case where kCLB > kpgr- Lf this case were to occur then a* < 0. Equa~
tion (3.34) can only be satisfied if FCR/VCR igs increasing with altitude. This,
however, is precisely the case which was disallowed in minimization of Hyp, Hpgr at
altitudes below cruise.

4. NUMERICAL RESULTS

4.1 Characteristics of Fuel Optimal Trajectories

A computer program was written which generates the optimal trajectories using
the helicopter model and optimization algorithm developed in this report. The pro~
gram numerically integrates the climb and descent portions of the trajectory optimiz-
ing the ascent and descent Hamiltonians at each step, simultancously. For the cruise
segment the cruise cost and speed are computed using a cruise weight computed as the
average of the beginning and end weights on the cruise. Since these weights are not
known initially, this process iz done iteratively until the weights converge. Umless
specifically mentioned otherwise, all results in this report are for the case of
minimum fuel cost in zero wind.

A typical set of trajectories is ss shown In figure 4.1 for an initial weight of
14,000 ib. To generate these curves the cruilge altitude was first specified, then
the cruise vange was calculated based on boundary condition (3.11e}, which must be
satisfied at the optimal altitude and range. A descent rate constraint of 30 ft/sec
was used on all trajectories. As a consequence of a ponundty clind factor
{kerp = 0.75, kpgy = 1.0} all trajectories have a nonzero crulse range which inm fact
shows very little varigtion with alritude. The lack of variation 1ls due primarily
to the fact that the derivative d¢/dh is almost constant in this entire altitude
range. Since the final Hamiltonian 1% 18 also relatively fixed, the subsequent
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cruise range computed from {(3.1l1e) exhibits very little variation with altitude.
The same is true for moderately higher weilghts as shown in figure 4.2,

For weights less than about 17,000 1b, the cruise cost is a monotonically
decreasing function of altitude. Hence, for longer ranges, the optimal cruise alti-
tude is increasingly higher. For the $5~6IN the maximum allowable altitude is
12,000 ft. At this altitude and using an initial weight of 14,000 1b, the natural
boundary condition on altitude yields a trajectory with total range of about 33 n. mi.
(see fig. 4.1). For a trajectory with a specified range greater than this value, the
minimum fuel trajectory cruises at the limit altitude of 12,000 ft. At this alti-
tude, the cruise segment is determined not from the transversality condition, but
from the total range condition:

Rogp = Bp = (Ryp + Rpgp)

It is important to note that the mathematically optimum altitude is very signifi-
cantly a function of initial weight. The most important parameter in establishing the
optimun altitude is the variation with altitude of the quasi-steady "cruise cost”

Yy o= min(wFKU). Using our variational appreach, the optimum cruise altitude is at or

7 :

slightly below, the altitude for minimum . At low initial weights (see fig. 2.7)
the optimum cruise is at |hga, = 12,000 ft. At high weights (19,000 1b) the opti-
mum altitude is at hg;, = O.

Although the curves of cruise cost change smoothly with weight, the optimum alti-
tude changes rather abruptly from hg,, te hpy, at a weight slightly greater than
17,000 1b. 1t should be pointed out that at the higher weights and higher altitudes,
the smoothed power model (A) departs significantly from the pointwise model (B).

Thus, while at 17,000 1b the smoothed model {(A) predicts improved cruise performance
uUp to hpay. the pointwise model (B) predicts rapidly deteriorating performance for
altitudes greater than about 8,000 ft. Similarly at the 19,000 1b weight, for alti-
tudes above 8,000, the smoothed model (A) predicts substantially less degradation
than the pointwise model (B).

The significance of these differences can be more easily evaluated by observing
the fuel variation on minimum fuel traiectories, where the cruise altitude is con-
strained at a nonoptimal value. Figure 4.3 demonstrates this effect using the
smoothed {A) model. For the 14,000 1b vehicle, cruise at the optimal altitude of
12,000 ft represents gbout a 3% improvement over c¢ruise at 1,000 fr. Since the two
fitting techniques (A and B) agree so closely in this low-weight range these results
are felt to be reliable and represent a true fuel savings. For the heavy weight of
19,000 1b, the figure similarly predicts a substantial fuel saving o¢f about 10% by
choice of the lowest possible cruise altitude (here 1,000 ft). Comparison of the
optimal trulse costs in figure 2.7 indicates that at the lowest altitude the "A" wmodel
predicts significantly better fuel consumption than the "B" model, hence the low value
of about 480 1b fuel in figure 4.3 is probably not attainable. At high altitudes the
reverse is t{rue, however, as the "A" model does not fit the cruise data well in this
range and predicts significantly better fuel consumption than the "B" model. Thus,
while the trend predicted in figure 4.3 is correct the actual minimum fuel used is
probably in errer and the penalty for high cruise altitudes may be greater than that
shows.

At the intermediate welght of 17,000 Ib the cruise cost of figure 2.7 shows
iittle wvariation with altitudes for performance model "A." Similarly in figure 4.3
the total fuel consumed varies by only about 10 1b for all cruise aititudes from




1,000 fr to 12,000 fr. Thus, in this weight range there is little to be gained by
optimizing cruise altitude (of course velocity must still be optimized!). In view
of the differences between the "A" and "B" models at the high altitudes, conservative
engineering judgment indicates that a cruise altitude below 8,000 ft is probably
appropriate.

The identical curves for a 100 n. mi. range mission are shown in figure 4.4.
While the behavior is similar, we observe that there is slightly more variation in
the 17,000 1b case. The reason for thig is that the cruise fuel is based on the aver-
age crulse weight. Thus, while the initial weights on figures 4.3 and 4.4 are the
same, the "average cruise welght” for the 100 n. ml. range 1s almost 200 1b less than
in the former case. Note also that since the ¢ is different, the ascent and descent
Hamiltonian is slightly different; therefore, the resulting climb and descent profiles
are not exactly the same in the two cases. In general, a smaller, more favorable
cruise parameter ¢ causes the ascent leg of the optimal tralectory to be steeper and
to ¢limb more guickly, making the climb segment shorter and the cruise segment longer.

4.2 Speed Varilation on Optimal Trajectorles

Optimal climb speeds on the minimum fuel trajectories tend to be much faster than
the speeds for fastest climb rate (60-70 knots). At comparable altitudes the speed
in descent is generally faster than the speed in climb, “The variation of the optimal
speeds for one particular weight is shown in figure 4.5 for various cruise altitudes.
sumerical minimization of the Hamiltonian does confirm, in fact, that at the cruise
altitude, the three speeds Vpp, Vpgp. and Vep all cealesce to a single value. The
advantage of trading off climb rate for forward speed can be seen in table 4.1 which
compares an optimal climbecruise~descent profile with a fastest climb-optimal cruise~
optimal descent profile of the same total range. ¥For the fastest climb rate, flight
speeds are between 60 and 70 knots true airspeed.

While the advantage is slight, only abcut 2%, it should be pointed cut that the
fuel consumed in this case is dominated by the long cruise. In a shorter-range tra-
jectory, it is antitipcated that the relative advantage of the optimal profile will
be increased.

Sensitivity of the speed profile to the helicopter performance model can be
deduced by computing trajectories under different hypotheses. Thus, figure 4.6 shows
the effect of using the smoothed model (A) or the pointwise model (B). 1In this case
the speed differences are less than > knots everywhere on the trajectory. Even
less important in determining the climb velocity is the climb factor kepg. Fig-
ure 4.7 shows that the optimal speed is essentially independent of the c¢limb factor
for the case shown. The optimal trajectory will of course differ substantially. The
lack of sensitivity te these model parvameters is typical of the cases examined and
seems to indicate that the optimal results presented here can be applied (judiciously
as always) even if there exists some uncertainty regarding the correctness of the
helicopter dynamic model.

4.3 FEffect of Winds
The magnitude and direction of winds are known to have a substantial effect on
the optimal performance of any aircraft. This effect is accentuated on a conventlonal

helicopter because of the low flight speeds which make even a moderate wind fairly
important. The minimum fuel consumption for the 17,000~1b helicopter flying in
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-20, 0, and +20 knot wind is shown in figure 4.8 (negative values are headwinds,
positive values are tailwinds). The effect of the wind on the fuel consumption is
obviously an important factor, but it is perhaps more important to note that there

is a substantial difference in the "optimal" flight profile through such an environ-
ment. Figure 4.9 compares the optimal airspeeds on these same trajectories. A
tailwind tends to decrease the optimal airspeed at all altitudes and to increase

it for a headwind. This is in accord with the generally accepted effect of wind

on the quasi-steady performance guantities, Wind variation with altitude iz also
eagily handled by the optimization algorithm and again the altitude variation can
have an important role in determining the optimal speed profile and the optimal alti-
tude, Figures 4.10 and 4.1] show the fuel cost and the optimal climb speed for tra-
jectories with various winds, including a linear wind where the wind velocity varies
from 20 knots at h = 0 to 530 kaots at h = 12,000 £, While these winds are fairly
substantial, they do represent, in fact, a typical enviromment for helicopters oper-
ating in off-shore areas. The winds are added dinto the trajectory logic with little
or no increase in complexity. The main difficulty with incorporating winds into an
on~line procedure is the probiem of determining the actual wind profile in the area
of flight. If such knowledge can be obtained, the potential payoff is substantial.

4.4 General Cost Optimization

The previous results have all applied to a direct fuel minimization. The gen-
eral cest function specified in this analysis allows a weighting between time and
fuel. This can be used to minimize a "dollar" cost if an appropriate cost of time
and fuel is specified. In addition, by varying the weight factor on time (cq), the
toetal flight time can be controlled. Determining an appropriate numerical value for
cp is done by simply inspecting the cost of fuel. For standard JP-4 at $1.16/gal
at 6.5 Ib/gal, this leads to cyp = $0.18/1b. The time weight factor, c¢p, is a more
subtle number to select. While direct operating costs are generally guoted as
$5300~51,000/hr, the cost savings dus to a decreased time is probably less than this
value.

Using cyp = $0,18/1b, the effect of ¢ on the time of flight and the fuel
required is plotted as a function of the cruise altitude in figure 4£.12. Even when
Cp = 0 (direct fuel minimization) the optimal speeds lie close to, or on, the Vyp
boundary {(compare the Vyg profiles shown in figure 2.8 to the speed profiles as in
figures 4.9 and 4.11). The sudden slope discontinuity, at hgp = 8,000 ft in fig-
ure 4,12 on the c¢p = U curve indicates the point where the optimal cruise speeds
are being pushed back by the receding Vyp boundary, thereby increasing the time of
flight. By making c¢p positive, optimal speeds are increased. When <7 veaches
$100/hr, the "optimal” speed is simply Vyp at all points on the trajectory inde-
pendent of the cruise altitude chosen. In this case, the minimum flight time occurs
at about a crulse altitude of 5,000 ft, where the maximum Vygp (for this weight)
occurs. If the cruise altitude 1s fixed, increasing cyp beyond $100/hr cannot change
the trajectory since the veloeity is already at a counstraint boundary., 1t will
change the "cost" certainly and will change the "optimun' crulse altitude — with
larger values of < causiog the optimal cruise altitude to drop to the minimum time
alritude. -

The appropriate values of ¢y, ¢p €0 use in a realistic environment must be
determined by the helicepter operator, For this example, with a fixed 30 n. mi.
range, the minimum-fuel tvajectory cruises at 12,000 £t and uses 375 1b fuel with a
flight duration of (.45 hr, or 27 min. ¥For the minimum-time trajectory, on the other
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hand, the cruise is at 5,000 ft, the total trip time is about 3 min shorter, and the
fuel consumed is an extra 100 1b.

5. CONCLUDING REMARKS

The on-line determination of optimal flightpaths for helicopters has been shown
to be useful and computationally feasible. The two developments which permit the
solution to this problem are: (1) an efficient, simple performance model for the
helicopter and (2) use of the simplified "climb-cruise-descent," trajectory-
optimization model.

To ensure the accuracy requivement for the helicopter performance model it
seems mandatory that the analytical model be empirically curve-fitted to the flight-
test data. The model used in this report is based on a simple power model fit for
various altitudes and weights. For more general studies, a more refined model would
be desirable and should probably be based on a2 parameterization in terms of more
fundamental performance variables such as thrust coefficient and advance ratio.
Nevertheless, for the specific vehicle under consideration, the optimal trajectories
as computed are believed to be quite realistic. The primary characteristics of the
optimal trajectories can be summarized as follows:

1. The sgpeeds on fuel optimal trajectories tend to be fairly fast, that is,
near the maximum speed of the vehicle. Speeds on the climb leg of the optimal tra-—
jectories tend to be significantly faster than the speed for greatest climb rate.
As the length of the cruise segment increages, the optimal climb speed deoes, however,
tend to approach that for greatest rate of ¢limb. For many cases, particularly at
high altitudes, the optimal climb speeds are limited by the Vyp boundary of the
aireraft. This situation and the fact that much of the flight manual power required
data are also outside the Vgg boundary seems quite uwnusual. I1f the quoted Vg
boundary can reascnably be extended some improvement in performance could be achieved.

Z. In contrast to the fixed-wing aircraft, all optimal helicopter trajectories
have a nonzerp cruise segment because of the nonunity climb factor used in the per-
formance model. The cruise segment distance tends to be relatively constant at a
small value until the cruise altitude approaches the sititude for minimum cruise cost
at which point the cruise segment is determined by the range constraint. In practice
the optimal altitudes ave at sea level for the heavy weight case (W z 17,000 1b) and
at 12,000 ft (the maximum altitude) for low weights (W £ 15,000 1b). For the inter-
mediate welghts (16,000 = 17,000 ib} the optimal altitudes change from the minimum to
the maximum value. The difference in fuel consumed for all cruise altitudes is
slight, however, in this weight range and in view of uncertainty associated with the
high altitude performance model for this weight, the low to intermediate cruise alti-
tude should be chosen.

3. The descent segment of the trajectory is alwaye [lown on a minimum power
constraint of some type. While the fuel consumed in the descent segment is genevrally
much less than on the remainder of the trajectory {hence, fuel optimization is much
less critical), the descent vange ig crucial in determining the length of the remain-
ing trajectory segments, A primavy consideration in astablishing any descent criteria
is to avoid autorvotation and the vortex ring state. The constraint used alwmost
exclusively in this report was a fixed descent vate of 1,800 ft/min, This figurs was
judged reasonable for VFR trajectories based on conversations with geveral helicopter
pilots. Depending on weather and proximity to the ground, lower descent rates
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could be imposed., It should be noted that optimum flight speeds are independent of
the particular descent rate chosen.

Because the descent range is crucial in determining the length of the other tra-
jectory segments, additional input is needed, particularly from pilots, to determine
what type of descent criteria is most appropriate for either manual or automatic
flightpath control.

4. Substantial decreases in time of flight can be achieved with only a small
fuel penalty. Generally, the weighting of time on the optimal trajectory tends to
force the cruise altitudes toward the altitude for greatest true airspeed — about
5,000 £t for this vehicle (the exact altitude depends on weight). Speeds in this
case are generally on a Vyp boundary.

Further work needs to be performed to improve and/or validate the performance
model used in this report. This should include more detailed analytical modeling as
well as flight~test verification. Topics for further study include: (1) trajectory
integration with the takeoff and landing phases of vehicle operation, (2) integration
of the optimal trajectory system with 3-D and 4-D flightpath guldance systems, and
(3) more rigorous comparison of the optimal trajectories with the results of an
untconstrained optimization.
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TABLE 2.1.- S~61N HELICOPTER COEFFICIENTS

A -~ rTotor area 3019 £t?
g = solidity 0.077
cq — average drag coefficient 0.010
fo - drag area 30 fr?
Ve - rotor tip speed 659 ft/sec
TABLE 4.1.-
Condition Optimal | Best R/C {ascent)
Range up 11.5 5.5
Range cruise 75.4 81.4
Range descent 13.1 13.1
Total range 160.0- 100.0
Fuel up 145 117
Fuel cruise 511 553
Fuel descent _ 60 60
Total fuel 716 730
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Figure 2.3.- Variation of power multipliey with thrust ccefficienc. (a} Induced;
{b} Farasite:; (¢} Rotor profile.
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